A forced model

This is the null model of aquatic mosquito dynamics; there are no endogenous dynamics and the model is simply specified by Lambda, the rate at which adult mosquitoes spontaneously emerge from aquatic habitats.

Below we show an example, taken from the package tests, of using the trivial-based aquatic model to keep an adult mosquito model at equilibrium when using unequal numbers of aquatic habitats per patch.

The Long Way

First, we set the parameter values.

nPatches <- 3
nHabitats <- 4
membership = c(1,2,3,3)
HPop = 1000
calN <- matrix(0, nPatches, nHabitats)
calN[1,1] <- 1
calN[2,2] <- 1
calN[3,3] <- 1
calN[3,4] <- 1

calU <- matrix(0, nHabitats, nPatches)
calU[1,1] <- 1
calU[2,2] <- 1
calU[3:4,3] <- 0.5
f <- rep(0.3, nPatches)
q <- rep(0.9, nPatches)
g <- rep(1/20, nPatches)
sigma <- rep(1/10, nPatches)
mu <- rep(0, nPatches) 
eip <- 11
nu <- 1/2
eggsPerBatch <- 30
MYZo = list(
  g=g, sigma=sigma, mu=mu, f=f, q=q, nu=nu, eggsPerBatch = eggsPerBatch
)
calK <- matrix(0, nPatches, nPatches)
calK[1, 2:3] <- c(0.2, 0.8)
calK[2, c(1,3)] <- c(0.5, 0.5)
calK[3, 1:2] <- c(0.7, 0.3)
calK <- t(calK)

Omega <- compute_Omega_xde(g, sigma, mu, calK)
Upsilon <- expm::expm(-Omega * eip)

kappa <- c(0.1, 0.075, 0.025)
Lambda <- c(5, 10, 8)

Next, we calculate equilibrium values following the Ross-Macdonald vignette. We use 𝒩\mathcal{N} and 𝒰\mathcal{U} to describe how aquatic habitats are dispersed amongst patches, and how mosquitoes in each patch disperse eggs to each habitat, respectively. Please note because we have unequal numbers of aquatic habitats and patches, we use MASS::ginv to compute the generalized inverse of 𝒩\mathcal{N} to get α\alpha required at equilibrium.

# equilibrium solutions
Omega_inv <- solve(Omega)

M_eq <- as.vector(Omega_inv %*% Lambda)
P_eq <- as.vector(solve(diag(f, nPatches) + Omega) %*% diag(f, nPatches) %*% M_eq)

# the "Lambda" for the dLdt model
alpha <- as.vector(ginv(calN) %*% Lambda)

Now we set up the model. Please see the Ross-Macdonald vignette for details on the adult model. We use alpha as the Lambda parameter of our forced emergence model, in ramp.xds::make_parameters_L_trivial. Again, because we are not running the full transmission model, we must use ramp.xds::MosquitoBehavior to pass the equilibrium values of those bionomic parameters to ramp.xds::xDE_diffeqn_mosy.

params <- make_xds_template("ode", "mosy", nPatches, membership)

params = setup_Lpar("trivial", params, 1, Lopts = list(Lambda=alpha))

params = setup_Linits(params, 1)

params = setup_MYZpar("basicM", params, 1, MYZopts=MYZo)

params = setup_MYZinits(params, 1, list(M=M_eq, P=P_eq))
params = setup_Xpar("trivial", params, 1, list(HPop=HPop))
params = make_indices(params)
params$kappa = list()
params$kappa[[1]] = kappa
params <- change_calK(calK, params)
y0 <- get_inits(params)
y0
#> $L
#> list()
#> 
#> $MYZ
#> $MYZ$M
#> [1] 157.8680 123.4518 178.6802
#> 
#> $MYZ$P
#> [1] 140.35170  98.87622 155.05779
#> 
#> 
#> $X
#> numeric(0)
out <- deSolve::ode(y = get_inits(params, flatten=TRUE), times = seq(0,50, by=10), func = xde_derivatives, parms = params, method = 'lsoda')
out1 <- out
colnames(out)[params$ix$MYZ[[1]]$M_ix+1] <- paste0('M_', 1:params$nPatches)
colnames(out)[params$ix$MYZ[[1]]$P_ix+1] <- paste0('P_', 1:params$nPatches)

out <- as.data.table(out)
out <- melt(out, id.vars = 'time')
out[, c("Component", "Patch") := tstrsplit(variable, '_', fixed = TRUE)]
out[, variable := NULL]

ggplot(data = out, mapping = aes(x = time, y = value, color = Patch)) +
  geom_line() +
  facet_wrap(. ~ Component, scales = 'free') +
  theme_bw()

Using Setup

Lo = list(
  Lambda = alpha 
)
MYZo = list(
  f = 0.3,
  q = 0.9,
  g = 1/20,
  sigma = 1/10,
  eip = 11,
  nu = 1/2,
  eggsPerBatch = 30,
  M=M_eq,
  P=P_eq
)
xds_setup_mosy(MYZname = "basicM", Lname = "trivial", 
               nPatches = 3, membership = c(1,2,3,3), 
               MYZopts = MYZo, calK = calK, HPop=HPop, Lopts = Lo, 
               kappa = c(0.1, 0.075, 0.025))->mosy1
xds_solve(mosy1,Tmax=50,dt=10)$outputs$orbits$deout -> out2
sum(abs(out2-out1))
#> [1] 0