Package index
-
xds_scaling() - Scaling for Malaria Metrics
-
xds_scaling(<eir>) - Compute eir-pr scaling relationships
-
xds_scaling(<Lambda>) - Compute scaling relationships from mosquito emergence through PfPR
-
xds_scaling_Lambda() - Compute
-
compute_Lambda_threshold() - Get High/Low Values for Lambda
-
xds_plot_eirVpr() - xds_plot EIR(t) vs. the PR(t)
-
xds_plot_eirpr() - xds_plot the eir-pr scaling relationship
-
lines_eirVpr() - Add lines for the EIR(t) vs. the PR(t)
-
lines_eirpr() - Add lines for an eir-pr scaling relationship
-
pr2Lambda() - Using the eirpr matrix and a RM xds_obj, convert pr to Lambda
-
xds_eir2ni() - Convert eir to ni
-
xds_eir2pr() - Convert eir to pr
-
xds_pr2eir() - Convert pr to eir
-
xds_pr2Lambda() - Convert pr to lambda
-
xds_pr2m() - Convert pr to mosquito density
-
xds_pr2ni() - Convert pr to ni
-
pr2history() - Reconstruct a history of exposure from a PR time series
-
pr2history_xm() - Reconstruct a history of exposure from a PR time series
-
reconD_shock_xm() - Reconstruct a history of exposure from a PR time series
-
eir2fqZ() - Convert the EIR into a vector describing infective biting density
-
fqZ2eir() - Convert a vector describing infective biting density into the EIR, \(E\)
-
make_HTC_matrix() - Parasite dispersal by humans
-
make_VC_matrix() - Parasite dispersal by mosquitoes
-
make_calR() - Parasite Dispersal through one Parasite Generation (Humans)
-
make_calZ() - Parasite Dispersal through one Parasite Generation (Mosquitoes)
-
add_orbits() - Draw the orbit for the \(i^{th}\) element of eirpr$scaling.
-
add_orbits_px() - Draw the orbit for the \(i^{th}\) element of eirpr$scaling, and add points at the minimum and maximum eir and pr
-
compute_IoSD_F() - Compute the Index of Dispersal for a function F(t) over one year.
-
compute_IoSD_S() - Compute the Index of Seasonal Dispersal for a seasonal pattern \(S(t)\) over one year. This assumes that $$\int_0^{365} S(t)dt = 365$$
-
compute_IoSD_pr() - Compute the Index of Seasonal Dispersal for a PR seasonal orbit for the \(i^{th}\) element of
eirpr$scaling -
add_eirpr_orbits() - Draw the orbit for the \(i^{th}\) element of eirpr$scaling.
-
setup_fitting() - Set up the xds_obj fitting object
-
setup_data() - Set up the data object for fitting
-
fit_model() - Fit a model to data
-
compute_gof() - Compute GoF
-
compute_gof(<sse>) - Compute SSE
-
compute_gof_X() - Compute the GoF for
X
-
fit_mean_forcing() - Fit mean forcing
-
fit_season() - Fit a seasonal pattern
-
fit_season_amplitude() - Fit a seasonal pattern
-
fit_season_phase() - Fit a seasonal pattern
-
fit_season_bottom() - Fit a seasonal pattern
-
fit_season_pw() - Fit a seasonal pattern
-
fit_season_phase_alt() - Fit the phase
-
fit_trend() - Fit interannual variability using splines
-
update_function_X() - Update a function
-
update_function_X(<mean_forcing>) - Update Mean Forcing
-
update_function_X(<phase>) - feature a function
-
update_function_X(<bottom>) bottom-
update_function_X(<pw>) - feature a function
-
update_function_X(<season>) - feature
F_season -
update_function_X(<amplitude>) - feature a function
-
update_function_X(<trend>) - Update the Trend Function
-
update_function_X(<irs_contact>) - feature the irs contact function
-
update_function_X(<bednet_contact>) - feature the bed net coverage function
-
update_function_X(<multifit>) - Compute the GoF for
X
-
setup_fitting_indices() - Set up indices for model fitting
-
setup_fitting_indices(<amplitude>) - Seasonality:
amplitudeIndices -
setup_fitting_indices(<bottom>) - Seasonality:
bottomIndices -
setup_fitting_indices(<mean_forcing>) - Indices for Mean Forcing
-
setup_fitting_indices(<phase>) - Seasonality:
phaseIndices -
setup_fitting_indices(<pw>) - Seasonality:
pwIndices -
setup_fitting_indices(<season>) - Seasonality Indices
-
setup_fitting_indices(<trend>) - Setup indices for
-
setup_fitting_indices(<bednet_contact>) - Setup indices for bednet coverage
-
setup_fitting_indices(<irs_contact>) - Setup indices for irs contact
-
modify_vector_X(<NULL>) - Replace Values in a List
-
modify_vector_X() - Replace
-
modify_vector_X(<numeric>) - Replace Values in a List
-
get_init_X() - Get Initial Values for Parameters
-
get_init_X(<amplitude>) - Get Initial Values for Parameters
-
get_init_X(<bednet_contact>) - Get initial X: Bed net coverage
-
get_init_X(<bottom>) - Get Initial Values for Parameters
-
get_init_X(<irs_contact>) - Get initial X: IRS contact
-
get_init_X(<mean_forcing>) - Get Initial Values for Parameters
-
get_init_X(<multifit>) - Compute the GoF for
X -
get_init_X(<phase>) - Get Initial Values for Parameters
-
get_init_X(<pw>) - Get Initial Values for Parameters
-
get_init_X(<season>) - Get Initial Values for Parameters
-
get_init_X(<trend>) - Get Initial Values for Parameters
-
sigX() sigX
-
get_limits_X() - Get Limits
-
get_limits_X(<bednet_contact>) - Get limits for IRS coverage parameters
-
get_limits_X(<bottom>) - Get Initial Values for Parameters
-
get_limits_X(<irs_contact>) - Get Initial Values for Parameters
-
get_limits_X(<mean_forcing>) - Get Initial Values for Parameters
-
get_limits_X(<phase>) - Get Initial Values for Parameters
-
get_limits_X(<pw>) - Get Initial Values for Parameters
-
get_limits_X(<trend>) - Get Initial Values for Parameters
-
setup_hindcast() - Hindcast a Baseline
-
hindcast_ty() - Hindcast a Baseline
-
setup_hindcast_y() - Set up a hindcast for burn-in
-
setup_hindcast_y(<use_first>) - Set up the pre-observation interpolating points
-
setup_hindcast_y(<mirror>) - Set up the pre-observation interpolating points
-
setup_hindcast_y(<asis>) - Set up the pre-observation interpolating points
-
forecast_ty() - Set the forecast interpolation
-
gam_forecast() - Fit and draw
-
show_fit() - Plot the model and the data
-
show_residuals() - Plot the model and the data
-
setup_forecast() - Set the forecast interpolation
-
setup_forecast_y() - Forecast a Baseline
-
setup_forecast_y(<asis>) - Set forecast interpolation points
-
setup_forecast_y(<use_last>) - Set forecast interpolation points
-
change_forecast_ix() - Make a Forecast from Trusted Values
-
change_forecast_ty() - Impute the baseline
-
setup_imputation() - Setup Imputation
-
get_trend_ty() - Get a set of trusted interpolation points
-
impute_spline_y() - Impute the baseline
-
impute_value() - Impute the baseline
-
impute_value(<first>) - Use Mean for Modify Baseline
-
impute_value(<gam>) - Baseline with gamma predictions
-
impute_value(<last>) - Use Mean for Modify Baseline
-
impute_value(<max>) - Use Max for Modify Baseline
-
impute_value(<mean>) - Use Mean for Modify Baseline
-
impute_value(<median>) - Use Median for Modify Baseline
-
impute_value(<min>) - Use Min for Modify Baseline
-
impute_value(<reverse>) - Use Mean for Modify Baseline
-
impute_value(<subsamp>) - Create a modify Baseline
-
impute_value(<asis>) - Use Mean for Modify Baseline
-
get_trend_ty(<all>) - Get interpolation points
-
get_trend_ty(<first>) - Get interpolation points
-
get_trend_ty(<ix>) - Get the interpolation points
-
get_trend_ty(<last>) - Get interpolation points
-
get_trend_ty(<nix>) - Get interpolation points
-
get_trend_ty(<tix>) - Get interpolation points
-
get_trend_ty(<unmodified>) - Get the interpolation points
-
preset_phase() - Initialize the phase parameter
-
approx_phase() - Compute the observed phase
-
check_season_par(<Lambda>) - Check the seasonal setup
-
check_season_par() - Check the seasonal setup
-
check_season_par(<eir>) - Check the seasonal setup
-
init_fit_season() - Set up the seasonal pattern
-
init_fit_season(<list>) - Set up the seasonal pattern
-
init_fit_season(<sin>) - Set up the seasonal pattern
-
update_fit_trend() - feature Interpolation Points
-
get_fit_trend() - Get Spline \(t, y\) Values
-
compile_fit_trend() - Check the trend setup
-
compile_fit_trend(<Lambda>) - Check the trend setup
-
compile_fit_trend(<eir>) - Check the trend setup
-
crude_fit_trend() - Initialize the trend
-
crude_fit_trend(<Lambda>) - Initialize the trend
-
crude_fit_trend(<eir>) - Initialize the trend
-
change_all_fit_spline_ty() - Replace Spline \(y\) Values
-
change_all_fit_spline_y() - Replace Spline \(y\) Values
-
change_all_fit_spline_t() - Replace Spline \(t\) Values
-
change_ix_fit_spline_ty() - Change Spline \(t,y\) Values
-
change_ix_fit_spline_y() - Change Spline \(y\) Values
-
change_ix_fit_spline_t() - Change Spline \(t\) Values
-
add_fit_spline_ty() - Change Spline \(t,y\) Values
-
rm_ix_fit_spline_ty() - Change Spline \(t,y\) Values
-
event_chop_spline_t() - Adjust Spacing
-
get_yix_after_bednet_round() - Time Since Event
-
get_yix_after_irs_round() - Time Since Event
-
time_since_event() - Time Since Event
-
fit_bednet_contact() - Fit bed net coverage
-
fit_irs_contact() - Fit irs contact
-
restore_pr2history() - Reconstruct a history of exposure from a PR time series
-
save_pr2history() - Save the history fit_obj
-
compute_impact() - Compute Measures of Impact
-
fit_irs_shock() - Fit IRS Shock
-
get_init_X(<irs_shock>) - Get initial X: IRS shock
-
get_limits_X(<irs_shock>) - Get Initial Values for Parameters
-
setup_fitting_indices(<irs_shock>) - Setup indices for irs shock
-
update_function_X(<irs_shock>) - feature the irs shock function
-
fit_bednet_shock() - Fit Bednet Shock
-
get_init_X(<bednet_shock>) - Get initial X: bednet shock
-
get_limits_X(<bednet_shock>) - Get Initial Values for Parameters
-
setup_fitting_indices(<bednet_shock>) - Setup indices for bednet shock
-
update_function_X(<bednet_shock>) - feature the bednet shock function
-
fit_bednet_shock_d50() - Fit bednet d50
-
get_init_X(<bednet_shock_d50>) - Get initial X: bednet d50
-
get_limits_X(<bednet_shock_d50>) - Get Initial Values for Parameters
-
setup_fitting_indices(<bednet_shock_d50>) - Setup indices for bednet d50
-
update_function_X(<bednet_shock_d50>) - feature the bednet d50 function
-
X2dshape() X2bottom-
fit_bednet_dshape() - Fit bednet dshape
-
fit_bednet_shock_size() - Fit bednet shock_size
-
fit_irs_d50() - Fit IRS shock_d50
-
fit_irs_dshape() - IRS Effects: Fit Shape
-
fit_irs_shock_size() - Fit IRS shock_size
-
get_init_X(<bednet_dshape>) - Get initial X: bednet dshape
-
get_init_X(<bednet_shock_size>) - Get initial X: bednet shock_size
-
get_init_X(<irs_d50>) - Get initial X: IRS shock_d50
-
get_init_X(<irs_dshape>) - Get initial X: IRS dshape
-
get_init_X(<irs_shock_size>) - Get initial X: IRS shock_size
-
get_limits_X(<bednet_dshape>) - Get Initial Values for Parameters
-
get_limits_X(<bednet_shock_size>) - Get Initial Values for Parameters
-
get_limits_X(<irs_d50>) - Get Initial Values for Parameters
-
get_limits_X(<irs_dshape>) - Get Initial Values for Parameters
-
get_limits_X(<irs_shock_size>) - Get Initial Values for Parameters
-
setup_fitting_indices(<bednet_dshape>) - Setup indices for bednet dshape
-
setup_fitting_indices(<bednet_shock_size>) - Setup indices for bednet shock_size
-
update_function_X(<irs_dshape>) - feature the irs dshape function
-
update_function_X(<irs_shock_size>) - feature the irs shock_size function
-
setup_fitting_indices(<irs_d50>) - Setup indices for irs shock_d50
-
setup_fitting_indices(<irs_dshape>) - Setup indices for irs dshape
-
setup_fitting_indices(<irs_shock_size>) - Setup indices for irs shock_size
-
update_function_X(<bednet_dshape>) - feature the bednet dshape function
-
update_function_X(<bednet_shock_size>) - feature the bednet shock_size function
-
update_function_X(<irs_d50>) - feature the irs shock_d50 function