Package index
-
xds_scaling()
- Scaling for Malaria Metrics
-
xds_scaling(<eir>)
- Compute eir-pr scaling relationships
-
xds_scaling(<Lambda>)
- Compute scaling relationships from mosquito emergence through PfPR
-
xds_scaling_Lambda()
- Compute
-
compute_Lambda_threshold()
- Get High/Low Values for Lambda
-
xds_plot_eirVpr()
- xds_plot EIR(t) vs. the PR(t)
-
xds_plot_eirpr()
- xds_plot the eir-pr scaling relationship
-
lines_eirVpr()
- Add lines for the EIR(t) vs. the PR(t)
-
lines_eirpr()
- Add lines for an eir-pr scaling relationship
-
pr2Lambda()
- Using the eirpr matrix and a RM xds_obj, convert pr to Lambda
-
xds_eir2ni()
- Convert eir to ni
-
xds_eir2pr()
- Convert eir to pr
-
xds_pr2eir()
- Convert pr to eir
-
xds_pr2Lambda()
- Convert pr to lambda
-
xds_pr2m()
- Convert pr to mosquito density
-
xds_pr2ni()
- Convert pr to ni
-
pr2history()
- Reconstruct a history of exposure from a PR time series
-
pr2history_xm()
- Reconstruct a history of exposure from a PR time series
-
pr2history_cbmc()
- Reconstruct a history of exposure from a PR time series
-
eir2fqZ()
- Convert the EIR into a vector describing infective biting density
-
fqZ2eir()
- Convert a vector describing infective biting density into the EIR, \(E\)
-
make_HTC_matrix()
- Parasite dispersal by humans
-
make_VC_matrix()
- Parasite dispersal by mosquitoes
-
make_calR()
- Parasite Dispersal through one Parasite Generation (Humans)
-
make_calZ()
- Parasite Dispersal through one Parasite Generation (Mosquitoes)
-
add_orbits()
- Draw the orbit for the \(i^{th}\) element of eirpr$scaling.
-
add_orbits_px()
- Draw the orbit for the \(i^{th}\) element of eirpr$scaling, and add points at the minimum and maximum eir and pr
-
compute_IoSD_F()
- Compute the Index of Dispersal for a function F(t) over one year.
-
compute_IoSD_S()
- Compute the Index of Seasonal Dispersal for a seasonal pattern \(S(t)\) over one year. This assumes that $$\int_0^{365} S(t)dt = 365$$
-
compute_IoSD_pr()
- Compute the Index of Seasonal Dispersal for a PR seasonal orbit for the \(i^{th}\) element of
eirpr$scaling
-
add_eirpr_orbits()
- Draw the orbit for the \(i^{th}\) element of eirpr$scaling.
-
setup_fitting()
- Set up the xds_obj fitting object
-
update_fitting_ty()
- feature Interpolation Points
-
fit_model()
- Fit a model to data
-
scaling_init_ty(<Lambda>)
- Use scaling to set initial guesses
-
scaling_init_ty()
- Use scaling to set initial guesses
-
compute_gof()
- Compute GoF
-
compute_gof(<sse>)
- Compute GoF by LSS
-
compute_gof_X()
- Compute the GoF for
X
-
fit_mean_forcing()
- Fit mean forcing
-
fit_season()
- Fit a seasonal pattern
-
fit_season_amplitude()
- Fit a seasonal pattern
-
fit_season_phase()
- Fit a seasonal pattern
-
fit_season_bottom()
- Fit a seasonal pattern
-
fit_season_pw()
- Fit a seasonal pattern
-
fit_season_phase_alt()
- Fit the phase
-
fit_trend()
- Fit interannual variability using splines
-
update_function_X()
- Update a function
-
update_function_X(<mean_forcing>)
- Update Mean Forcing
-
update_function_X(<phase>)
- feature a function
-
update_function_X(<bottom>)
- feature a function
-
update_function_X(<pw>)
- feature a function
-
update_function_X(<season>)
- feature
F_season
-
update_function_X(<amplitude>)
- feature a function
-
update_function_X(<trend>)
- Update the Trend Function
-
update_function_X(<irs_coverage>)
- feature the irs coverage function
-
update_function_X(<bednet_contact>)
- feature the bed net coverage function
-
update_function_X(<multifit>)
- Compute the GoF for
X
-
setup_fitting_indices()
- Set up indices for model fitting
-
setup_fitting_indices(<amplitude>)
- Seasonality:
amplitude
Indices
-
setup_fitting_indices(<bottom>)
- Seasonality:
bottom
Indices
-
setup_fitting_indices(<mean_forcing>)
- Indices for Mean Forcing
-
setup_fitting_indices(<phase>)
- Seasonality:
phase
Indices
-
setup_fitting_indices(<pw>)
- Seasonality:
pw
Indices
-
setup_fitting_indices(<season>)
- Seasonality Indices
-
setup_fitting_indices(<trend>)
- Setup indices for
-
setup_fitting_indices(<bednet_contact>)
- Setup indices for bednet coverage
-
setup_fitting_indices(<irs_coverage>)
- Setup indices for irs coverage
-
modify_vector_X(<NULL>)
- Replace Values in a List
-
modify_vector_X()
- Replace
-
modify_vector_X(<numeric>)
- Replace Values in a List
-
get_init_X()
- Get Initial Values for Parameters
-
get_init_X(<amplitude>)
- Get Initial Values for Parameters
-
get_init_X(<bednet_contact>)
- Get initial X: Bed net coverage
-
get_init_X(<bottom>)
- Get Initial Values for Parameters
-
get_init_X(<irs_coverage>)
- Get initial X: IRS coverage
-
get_init_X(<mean_forcing>)
- Get Initial Values for Parameters
-
get_init_X(<multifit>)
- Compute the GoF for
X
-
get_init_X(<phase>)
- Get Initial Values for Parameters
-
get_init_X(<pw>)
- Get Initial Values for Parameters
-
get_init_X(<season>)
- Get Initial Values for Parameters
-
get_init_X(<trend>)
- Get Initial Values for Parameters
-
get_limits_X()
- Get Limits
-
get_limits_X(<bednet_contact>)
- Get limits for IRS coverage parameters
-
get_limits_X(<bottom>)
- Get Initial Values for Parameters
-
get_limits_X(<irs_coverage>)
- Get Initial Values for Parameters
-
get_limits_X(<mean_forcing>)
- Get Initial Values for Parameters
-
get_limits_X(<phase>)
- Get Initial Values for Parameters
-
get_limits_X(<pw>)
- Get Initial Values for Parameters
-
get_limits_X(<trend>)
- Get Initial Values for Parameters
-
setup_hindcast()
- Hindcast a Baseline
-
hindcast_ty()
- Hindcast a Baseline
-
setup_pre_obs_y()
- Set up a hindcast for burn-in
-
setup_pre_obs_y(<use_first>)
- Set up the pre-observation interpolating points
-
setup_pre_obs_y(<mirror>)
- Set up the pre-observation interpolating points
-
setup_pre_obs_y(<asis>)
- Set up the pre-observation interpolating points
-
forecast_ty()
- Set the forecast interpolation
-
gam_forecast()
- Fit and draw
-
show_fit()
- Plot the model and the data
-
show_residuals()
- Plot the model and the data
-
setup_forecast()
- Set the forecast interpolation
-
setup_post_obs_y()
- Forecast a Baseline
-
setup_post_obs_y(<asis>)
- Set forecast interpolation points
-
setup_post_obs_y(<use_last>)
- Set forecast interpolation points
-
setup_imputation()
- Setup Imputation
-
get_ty()
- Get a set of trusted interpolation points
-
impute_spline_y()
- Impute the baseline
-
impute_value()
- Impute the baseline
-
impute_value(<first>)
- Use Mean for Modify Baseline
-
impute_value(<gam>)
- Baseline with gamma predictions
-
impute_value(<last>)
- Use Mean for Modify Baseline
-
impute_value(<max>)
- Use Max for Modify Baseline
-
impute_value(<mean>)
- Use Mean for Modify Baseline
-
impute_value(<median>)
- Use Median for Modify Baseline
-
impute_value(<min>)
- Use Min for Modify Baseline
-
impute_value(<reverse>)
- Use Mean for Modify Baseline
-
impute_value(<subsamp>)
- Create a modify Baseline
-
impute_value(<asis>)
- Use Mean for Modify Baseline
-
get_ty(<all>)
- Get interpolation points
-
get_ty(<first>)
- Get interpolation points
-
get_ty(<ix>)
- Get the interpolation points
-
get_ty(<last>)
- Get interpolation points
-
get_ty(<nix>)
- Get interpolation points
-
get_ty(<tix>)
- Get interpolation points
-
get_ty(<unmodified>)
- Get the interpolation points
-
preset_phase()
- Initialize the phase parameter
-
approx_phase()
- Compute the observed phase
-
check_season_par(<Lambda>)
- Check the seasonal setup
-
check_season_par()
- Check the seasonal setup
-
check_season_par(<eir>)
- Check the seasonal setup
-
setup_season()
- Set up the seasonal pattern
-
setup_season(<list>)
- Set up the seasonal pattern
-
setup_season(<sin>)
- Set up the seasonal pattern
-
setup_spline_fit()
- Title
-
setup_trend_par(<Lambda>)
- Check the trend setup
-
setup_trend_par()
- Check the trend setup
-
setup_trend_par(<eir>)
- Check the trend setup
-
fit_bednet_contact()
- Fit bed net coverage
-
fit_irs_coverage()
- Fit irs coverage
-
restore_pr2history()
- Reconstruct a history of exposure from a PR time series
-
save_pr2history()
- Save the history fitting
-
scaling_init_ty(<eir>)
- Use scaling to set initial guesses
-
change_forecast_ix()
- Make a Forecast from Trusted Values
-
change_forecast_ty()
- Impute the baseline
-
compute_impact()
- Compute Measures of Impact
-
event_chop_spline_t()
- Adjust Spacing
-
fit_shock()
- Fit interannual variability using splines
-
fitting_change_spline_t()
- Change Spline \(t\) Values
-
fitting_change_spline_ty()
- Change Spline \(t,y\) Values
-
fitting_change_spline_y()
- Change Spline \(y\) Values
-
fitting_get_spline_ty()
- Get Spline \(t, y\) Values
-
fitting_replace_spline_t()
- Replace Spline \(t\) Values
-
fitting_replace_spline_ty()
- Replace Spline \(y\) Values
-
fitting_replace_spline_y()
- Replace Spline \(y\) Values
-
get_init_X(<shock>)
- Get Initial Values for Parameters
-
get_limits_X(<shock>)
- Get Initial Values for Parameters
-
get_yix_after_bednet_round()
- Time Since Event
-
get_yix_after_irs_round()
- Time Since Event
-
setup_fitting_indices(<shock>)
- Setup indices for
-
time_since_event()
- Time Since Event
-
update_function_X(<shock>)
- Update the shock Function