Skip to contents

Scaling

Compute Scaling Relationships

xds_scaling()
Scaling for Malaria Metrics
xds_scaling(<eir>)
Compute eir-pr scaling relationships
xds_scaling(<Lambda>)
Compute scaling relationships from mosquito emergence through PfPR
xds_scaling_Lambda()
Compute
compute_Lambda_threshold()
Get High/Low Values for Lambda
xds_plot_eirVpr()
xds_plot EIR(t) vs. the PR(t)
xds_plot_eirpr()
xds_plot the eir-pr scaling relationship
lines_eirVpr()
Add lines for the EIR(t) vs. the PR(t)
lines_eirpr()
Add lines for an eir-pr scaling relationship

Metrics

Metric Conversion

pr2Lambda()
Using the eirpr matrix and a RM xds_obj, convert pr to Lambda
xds_eir2ni()
Convert eir to ni
xds_eir2pr()
Convert eir to pr
xds_pr2eir()
Convert pr to eir
xds_pr2Lambda()
Convert pr to lambda
xds_pr2m()
Convert pr to mosquito density
xds_pr2ni()
Convert pr to ni
pr2history()
Reconstruct a history of exposure from a PR time series
pr2history_xm()
Reconstruct a history of exposure from a PR time series
pr2history_cbmc()
Reconstruct a history of exposure from a PR time series
eir2fqZ()
Convert the EIR into a vector describing infective biting density
fqZ2eir()
Convert a vector describing infective biting density into the EIR, \(E\)
make_HTC_matrix()
Parasite dispersal by humans
make_VC_matrix()
Parasite dispersal by mosquitoes
make_calR()
Parasite Dispersal through one Parasite Generation (Humans)
make_calZ()
Parasite Dispersal through one Parasite Generation (Mosquitoes)

Seasonality

No methods to set subclass

add_orbits()
Draw the orbit for the \(i^{th}\) element of eirpr$scaling.
add_orbits_px()
Draw the orbit for the \(i^{th}\) element of eirpr$scaling, and add points at the minimum and maximum eir and pr
compute_IoSD_F()
Compute the Index of Dispersal for a function F(t) over one year.
compute_IoSD_S()
Compute the Index of Seasonal Dispersal for a seasonal pattern \(S(t)\) over one year. This assumes that $$\int_0^{365} S(t)dt = 365$$
compute_IoSD_pr()
Compute the Index of Seasonal Dispersal for a PR seasonal orbit for the \(i^{th}\) element of eirpr$scaling
add_eirpr_orbits()
Draw the orbit for the \(i^{th}\) element of eirpr$scaling.

Model Fitting

No methods to set subclass

setup_fitting()
Set up the xds_obj fitting object
update_fitting_ty()
feature Interpolation Points
fit_model()
Fit a model to data
scaling_init_ty(<Lambda>)
Use scaling to set initial guesses
scaling_init_ty()
Use scaling to set initial guesses

Goodness of Fit

No methods to set subclass

compute_gof()
Compute GoF
compute_gof(<sse>)
Compute GoF by LSS
compute_gof_X()
Compute the GoF for X

Fit Part of a Model

No methods to set subclass

fit_mean_forcing()
Fit mean forcing
fit_season()
Fit a seasonal pattern
fit_season_amplitude()
Fit a seasonal pattern
fit_season_phase()
Fit a seasonal pattern
fit_season_bottom()
Fit a seasonal pattern
fit_season_pw()
Fit a seasonal pattern
fit_season_phase_alt()
Fit the phase
fit_trend()
Fit interannual variability using splines

Update Function

Update function with parameter values

update_function_X()
Update a function
update_function_X(<mean_forcing>)
Update Mean Forcing
update_function_X(<phase>)
feature a function
update_function_X(<bottom>)
feature a function
update_function_X(<pw>)
feature a function
update_function_X(<season>)
feature F_season
update_function_X(<amplitude>)
feature a function
update_function_X(<trend>)
Update the Trend Function
update_function_X(<irs_coverage>)
feature the irs coverage function
update_function_X(<bednet_contact>)
feature the bed net coverage function
update_function_X(<multifit>)
Compute the GoF for X

Index Parameter Values

Index parameter values for fitting

setup_fitting_indices()
Set up indices for model fitting
setup_fitting_indices(<amplitude>)
Seasonality: amplitude Indices
setup_fitting_indices(<bottom>)
Seasonality: bottom Indices
setup_fitting_indices(<mean_forcing>)
Indices for Mean Forcing
setup_fitting_indices(<phase>)
Seasonality: phase Indices
setup_fitting_indices(<pw>)
Seasonality: pw Indices
setup_fitting_indices(<season>)
Seasonality Indices
setup_fitting_indices(<trend>)
Setup indices for
setup_fitting_indices(<bednet_contact>)
Setup indices for bednet coverage
setup_fitting_indices(<irs_coverage>)
Setup indices for irs coverage

Modify Fitted Parameters Vector

Index parameter values for fitting

modify_vector_X(<NULL>)
Replace Values in a List
modify_vector_X()
Replace
modify_vector_X(<numeric>)
Replace Values in a List

Initial Guesses for Parameter Values

Set limits on parameter values for fitting

get_init_X()
Get Initial Values for Parameters
get_init_X(<amplitude>)
Get Initial Values for Parameters
get_init_X(<bednet_contact>)
Get initial X: Bed net coverage
get_init_X(<bottom>)
Get Initial Values for Parameters
get_init_X(<irs_coverage>)
Get initial X: IRS coverage
get_init_X(<mean_forcing>)
Get Initial Values for Parameters
get_init_X(<multifit>)
Compute the GoF for X
get_init_X(<phase>)
Get Initial Values for Parameters
get_init_X(<pw>)
Get Initial Values for Parameters
get_init_X(<season>)
Get Initial Values for Parameters
get_init_X(<trend>)
Get Initial Values for Parameters

Limits on Parameter Values

Set limits on parameter values for fitting

get_limits_X()
Get Limits
get_limits_X(<bednet_contact>)
Get limits for IRS coverage parameters
get_limits_X(<bottom>)
Get Initial Values for Parameters
get_limits_X(<irs_coverage>)
Get Initial Values for Parameters
get_limits_X(<mean_forcing>)
Get Initial Values for Parameters
get_limits_X(<phase>)
Get Initial Values for Parameters
get_limits_X(<pw>)
Get Initial Values for Parameters
get_limits_X(<trend>)
Get Initial Values for Parameters

Hindcasting

No methods to set subclass

setup_hindcast()
Hindcast a Baseline
hindcast_ty()
Hindcast a Baseline
setup_pre_obs_y()
Set up a hindcast for burn-in
setup_pre_obs_y(<use_first>)
Set up the pre-observation interpolating points
setup_pre_obs_y(<mirror>)
Set up the pre-observation interpolating points
setup_pre_obs_y(<asis>)
Set up the pre-observation interpolating points

Forecasting

No methods to set subclass

forecast_ty()
Set the forecast interpolation
gam_forecast()
Fit and draw

Fitting

No methods to set subclass

show_fit()
Plot the model and the data
show_residuals()
Plot the model and the data
setup_forecast()
Set the forecast interpolation
setup_post_obs_y()
Forecast a Baseline
setup_post_obs_y(<asis>)
Set forecast interpolation points
setup_post_obs_y(<use_last>)
Set forecast interpolation points

Imputation

No methods to set subclass

setup_imputation()
Setup Imputation
get_ty()
Get a set of trusted interpolation points
impute_spline_y()
Impute the baseline
impute_value()
Impute the baseline
impute_value(<first>)
Use Mean for Modify Baseline
impute_value(<gam>)
Baseline with gamma predictions
impute_value(<last>)
Use Mean for Modify Baseline
impute_value(<max>)
Use Max for Modify Baseline
impute_value(<mean>)
Use Mean for Modify Baseline
impute_value(<median>)
Use Median for Modify Baseline
impute_value(<min>)
Use Min for Modify Baseline
impute_value(<reverse>)
Use Mean for Modify Baseline
impute_value(<subsamp>)
Create a modify Baseline
impute_value(<asis>)
Use Mean for Modify Baseline

Get Spline Interpolation Points

No methods to set subclass

get_ty(<all>)
Get interpolation points
get_ty(<first>)
Get interpolation points
get_ty(<ix>)
Get the interpolation points
get_ty(<last>)
Get interpolation points
get_ty(<nix>)
Get interpolation points
get_ty(<tix>)
Get interpolation points
get_ty(<unmodified>)
Get the interpolation points

Fitting Utilities for Seasonality

Impute the baseline

preset_phase()
Initialize the phase parameter
approx_phase()
Compute the observed phase
check_season_par(<Lambda>)
Check the seasonal setup
check_season_par()
Check the seasonal setup
check_season_par(<eir>)
Check the seasonal setup
setup_season()
Set up the seasonal pattern
setup_season(<list>)
Set up the seasonal pattern
setup_season(<sin>)
Set up the seasonal pattern

Impute the baseline

setup_spline_fit()
Title
setup_trend_par(<Lambda>)
Check the trend setup
setup_trend_par()
Check the trend setup
setup_trend_par(<eir>)
Check the trend setup

Fitting Utilities for Coverage

Impute the baseline

fit_bednet_contact()
Fit bed net coverage
fit_irs_coverage()
Fit irs coverage
restore_pr2history()
Reconstruct a history of exposure from a PR time series
save_pr2history()
Save the history fitting
scaling_init_ty(<eir>)
Use scaling to set initial guesses
change_forecast_ix()
Make a Forecast from Trusted Values
change_forecast_ty()
Impute the baseline
compute_impact()
Compute Measures of Impact
event_chop_spline_t()
Adjust Spacing
fit_shock()
Fit interannual variability using splines
fitting_change_spline_t()
Change Spline \(t\) Values
fitting_change_spline_ty()
Change Spline \(t,y\) Values
fitting_change_spline_y()
Change Spline \(y\) Values
fitting_get_spline_ty()
Get Spline \(t, y\) Values
fitting_replace_spline_t()
Replace Spline \(t\) Values
fitting_replace_spline_ty()
Replace Spline \(y\) Values
fitting_replace_spline_y()
Replace Spline \(y\) Values
get_init_X(<shock>)
Get Initial Values for Parameters
get_limits_X(<shock>)
Get Initial Values for Parameters
get_yix_after_bednet_round()
Time Since Event
get_yix_after_irs_round()
Time Since Event
setup_fitting_indices(<shock>)
Setup indices for
time_since_event()
Time Since Event
update_function_X(<shock>)
Update the shock Function