Skip to contents

Analytics

Compute Scaling Relationships

xde_scaling()
Construct an eirpr object for an arbitary model
xde_scaling_Z()
Compute eir-pr scaling relationships
xde_scaling_eir()
Compute eir-pr scaling relationships
xde_scaling_lambda()
Compute lambda from an eirpr object using the Ross-Macdonald model
pr2Lambda()
Using the eirpr matrix and a RM model, convert pr to Lambda
ssMYZ()
Set up the MYZss object for xde_scaling_lambda

Convert Scaling Relationships

xde_eir2ni()
Convert eir to ni
xde_eir2pr()
Convert eir to pr
xde_pr2eir()
Convert pr to eir
xde_pr2ni()
Convert pr to ni
xde_pr2m()
Convert pr to mosquito density
xde_pr2lambda()
Convert pr to lambda

Adult Mosquito Models

The model library for adult mosquito infection dynamics

The Adult Mosquito RMG Model

F_eggs(<RMG>)
Number of eggs laid by adult mosquitoes
F_fqZ(<RMG>)
Blood feeding rate of the infective mosquito population
F_fqM(<RMG>)
Blood feeding rate of the infective mosquito population
MBionomics(<RMG>)
Reset bloodfeeding and mortality rates to baseline
dMYZdt(<RMG>)
Derivatives for adult mosquitoes
get_inits_MYZ(<RMG>)
Return initial values as a vector
make_MYZinits_RMG()
Make inits for RMG adult mosquito model
make_MYZpar_RMG()
Make parameters for RM ODE adult mosquito model
make_indices_MYZ(<RMG>)
Add indices for adult mosquitoes to parameter list
make_inits_MYZ_RMG()
Make inits for RMG adult mosquito model
make_parameters_MYZ_RMG()
Make parameters for RMG ODE adult mosquito model
parse_deout_MYZ(<RMG>)
Parse the output of deSolve and return variables for the RMG model
setup_MYZpar(<RMG>)
Setup MYZpar for the RMG model
setup_MYZinits(<RMG>)
Setup initial values for the RMG model
update_inits_MYZ(<RMG>)
Make inits for RMG adult mosquito model

Human / vertebrate host infection & Immunity

The model library

New Utilities

split_stratum_by_biting()
Split a stratum into two strata, assigning

The SIS Model

split_stratum_by_biting(<SIS>)
Split a stratum into two strata, assigning a fraction p a new biting weight that is multiplied by a factor fac compared with the old one. The biting weight for the remaining 1-p gets a new factor 1/fac

The Garki model

F_X(<garki>)
Size of effective infectious human population
F_H(<garki>)
Size of effective infectious human population
F_pr(<garki>)
Compute the "true" prevalence of infection / parasite rate
F_b(<garki>)
Infection blocking pre-erythrocytic immunity
dXdt(<garki>)
Derivatives for human population
setup_Xpar(<garki>)
Setup Xpar.garki
setup_Xinits(<garki>)
Setup Xinits.garki
make_Xpar_garki()
Make parameters for Garki human model
make_Xinits_garki()
Make inits for Garki human model. Note that the variables should sum up to H, so the initial value of x1 is not set. The values are passed in the same order as they are presented in the original paper.
make_indices_X(<garki>)
Add indices for human population to parameter list
parse_deout_X(<garki>)
Parse the output of deSolve and return variables for the Garki model
get_inits_X(<garki>)
Return initial values as a vector for the Garki model
update_inits_X(<garki>)
Update Xinits for the Garki model
HTC(<garki>)
Compute the HTC for the garki model
xde_plot_X(<garki>)
Plot the density of infected individuals for the Garki model
xde_lines_X_garki()
Add lines for the density of infected individuals for the Garki model

The SIR model

F_X(<SIR>)
Size of effective infectious human population
F_H(<SIR>)
Size of human population
F_pr(<SIR>)
Compute the "true" prevalence of infection / parasite rate
F_b(<SIR>)
Infection blocking pre-erythrocytic immunity
dXdt(<SIR>)
Derivatives for human population
setup_Xinits(<SIR>)
Setup Xinits.SIR
setup_Xpar(<SIR>)
Setup Xpar.SIR
make_Xpar_SIR()
Make parameters for SIR human model, with defaults
make_Xinits_SIR()
Make initial values for the SIR human model, with defaults
make_indices_X(<SIR>)
Add indices for human population to parameter list
parse_deout_X(<SIR>)
Parse the output of deSolve and return variables for the SIR model
get_inits_X(<SIR>)
Return initial values as a vector
update_inits_X(<SIR>)
Update inits for the SIR human model from a vector of states
HTC(<SIR>)
Compute the HTC for the SIR model
xde_plot_X(<SIR>)
Plot the density of infected individuals for the SIR model
xde_lines_X_SIR()
Add lines for the density of infected individuals for the SIR model

The SEIR model

F_X(<SEIR>)
Size of effective infectious human population
F_H(<SEIR>)
Size of human population
F_pr(<SEIR>)
Compute the "true" prevalence of infection / parasite rate
F_b(<SEIR>)
Infection blocking pre-erythrocytic immunity
dXdt(<SEIR>)
Derivatives for human population
setup_Xpar(<SEIR>)
Setup Xpar.SEIR
setup_Xinits(<SEIR>)
Setup Xinits.SEIR
make_Xpar_SEIR()
Make parameters for SEIR human model, with defaults
make_Xinits_SEIR()
Make initial values for the SEIR human model, with defaults
make_indices_X(<SEIR>)
Add indices for human population to parameter list
parse_deout_X(<SEIR>)
Parse the output of deSolve and return variables for the SEIR model
get_inits_X(<SEIR>)
Return initial values as a vector
update_inits_X(<SEIR>)
Update inits for the SEIR human model from a vector of states
HTC(<SEIR>)
Compute the HTC for the SEIR model
xde_plot_X(<SEIR>)
Plot the density of infected individuals for the SEIR model
xde_lines_X_SEIR()
Add lines for the density of infected individuals for the SEIR model

Plot terms

plot_eirVpr()
Plot EIR(t) vs. the PR(t)
lines_eirVpr()
Add lines for the EIR(t) vs. the PR(t)
plot_eirpr()
Plot the eir-pr scaling relationship
lines_eirpr()
Add lines for an eir-pr scaling relationship